Bernays–Schönfinkel Class
   HOME

TheInfoList



OR:

The Bernays–Schönfinkel class (also known as Bernays–Schönfinkel–Ramsey class) of formulas, named after
Paul Bernays Paul Isaac Bernays (17 October 1888 – 18 September 1977) was a Swiss mathematician who made significant contributions to mathematical logic, axiomatic set theory, and the philosophy of mathematics. He was an assistant and close collaborator of ...
,
Moses Schönfinkel Moses Ilyich Schönfinkel (russian: Моисей Исаевич Шейнфинкель, translit=Moisei Isai'evich Sheinfinkel; 29 September 1888 – 1942) was a logician and mathematician, known for the invention of combinatory logic. Life Mose ...
and
Frank P. Ramsey Frank Plumpton Ramsey (; 22 February 1903 – 19 January 1930) was a British philosopher, mathematician, and economist who made major contributions to all three fields before his death at the age of 26. He was a close friend of Ludwig Wittgenste ...
, is a fragment of
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...
formulas where
satisfiability In mathematical logic, a formula is ''satisfiable'' if it is true under some assignment of values to its variables. For example, the formula x+3=y is satisfiable because it is true when x=3 and y=6, while the formula x+1=x is not satisfiable over ...
is decidable. It is the set of sentences that, when written in
prenex normal form A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in prop ...
, have an \exists^*\forall^* quantifier prefix and do not contain any
function symbol In formal logic and related branches of mathematics, a functional predicate, or function symbol, is a logical symbol that may be applied to an object term to produce another object term. Functional predicates are also sometimes called mappings, but ...
s. This class of logic formulas is also sometimes referred as effectively propositional (EPR) since it can be effectively translated into
propositional logic Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations b ...
formulas by a process of grounding or instantiation. The satisfiability problem for this class is
NEXPTIME In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time 2^. In terms of NTIME, :\mathsf = \bigcup_ \mathsf(2^) A ...
-complete.


See also

*
Prenex normal form A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in prop ...


Notes


References

* * Predicate logic {{mathlogic-stub